Ku70 Functions in Addition to Nonhomologous End Joining in Pancreatic β-Cells

نویسندگان

  • Omid Tavana
  • Nahum Puebla-Osorio
  • Jiseong Kim
  • Mei Sang
  • Stella Jang
  • Chengming Zhu
چکیده

The genesis of β-cells predominantly occurs through self-replication; therefore, understanding the regulation of cell proliferation is essential. We previously showed that the lack of nonhomologous end joining (NHEJ) DNA repair factor ligase IV leads to an accumulation of DNA damage that permanently halts β-cell proliferation and dramatically decreases insulin production, causing overt diabetes in a hypomorphic p53(R172P) background. In the present study, to further delineate the function of NHEJ, we analyzed mice deficient for another key NHEJ factor, Ku70, to discover the effect of cellular responses to DNA damage in pancreatic β-cells on cellular proliferation and glucose homeostasis. Analysis of Ku70(-/-) pancreatic β-cells revealed an accumulation of DNA damage and activation of p53-dependent cellular senescence similar to the results found in our earlier ligase IV deficiency study. To our surprise, Ku70(-/-) mice had significantly increased β-cell proliferation and islet expansion, heightened insulin levels, and decreased glycemia. This augmented β-cell proliferation was accompanied by an increased β-catenin level, which we propose to be responsible for this phenotype. This study highlights Ku70 as an important player not only in maintaining genomic stability through NHEJ-dependent functions, but also in regulating pancreatic β-cell proliferation, a novel NHEJ-independent function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ku70 functions in addition to nonhomologous end joining in pancreatic beta-cells: A connection to beta-catenin regulation

191 words, Main text: 3994 words, 5 figures (three color), 4 online sup. 50 references Running Title: Increased β -cell proliferation in Ku70 -/mice Page 1 of 41 Diabetes Diabetes Publish Ahead of Print, published online March 8, 2013 2 Abstract The genesis of β-cells predominantly occurs through self-replication, therefore, understanding the regulation of cell proliferation is essential. We pr...

متن کامل

Ku70 Functions in Addition to Nonhomologous End Joining in Pancreatic b-Cells A Connection to b-Catenin Regulation

The genesis of b-cells predominantly occurs through self-replication; therefore, understanding the regulation of cell proliferation is essential. We previously showed that the lack of nonhomologous end joining (NHEJ) DNA repair factor ligase IV leads to an accumulation of DNA damage that permanently halts b-cell proliferation and dramatically decreases insulin production, causing overt diabetes...

متن کامل

Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4

The classical nonhomologous end-joining (C-NHEJ) DNA double-strand break (DSB) repair pathway employs the Ku70/80 complex (Ku) for DSB recognition and the XRCC4/DNA ligase 4 (Lig4) complex for ligation. During IgH class switch recombination (CSR) in B lymphocytes, switch (S) region DSBs are joined by C-NHEJ to form junctions either with short microhomologies (MHs; "MH-mediated" joins) or no hom...

متن کامل

Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells

DNA repair by nonhomologous end-joining (NHEJ) relies on the Ku70:Ku80 heterodimer in species ranging from yeast to man. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, Ku also controls telomere functions. Here, we show that Ku70, Ku80, and DNA-PKcs, with which Ku interacts, associate in vivo with telomeric DNA in several human cell types, and we show that these associations are not ...

متن کامل

Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70.

Class switch recombination (CSR) in B lymphocytes is initiated by introduction of multiple DNA double-strand breaks (DSBs) into switch (S) regions that flank immunoglobulin heavy chain (IgH) constant region exons. CSR is completed by joining a DSB in the donor S mu to a DSB in a downstream acceptor S region (e.g., S gamma1) by end-joining. In normal cells, many CSR junctions are mediated by cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013